Polymer(Korea), Vol.39, No.2, 210-218, March, 2015
젤화 촉매의 종류 및 함량에 따른 경질 폴리우레탄 폼의 반응거동에 관한 연구
Study on Reaction Behavior of Rigid Polyurethane Foam with Various Types and Contents of Gelling Catalysts
E-mail:
초록
본 연구에서는 아민계 젤화 촉매 dimethylcyclohexyl amine(DMCHA)과 칼륨계 젤화 촉매 potassium octoate(PO)가 경질 폴리우레탄 발포체의 반응거동에 미치는 영향에 대해 연구하였다. Polymeric 4,4'-diphenyl methane diisocyanate, 폴리에스터 폴리올, 실리콘 유화제, 발포제 그리고 젤화 촉매를 사용하여 경질 폴리우레탄 발포체를 제조하였다. DMCHA 촉매의 함량이 0에서 2.0 g으로 증가함에 따라 반응 시간이 약 330초에서 약 35초로 감소하였고, 발열 반응으로 최대 반응온도는 약 217에서 약 234 oC로 증가하였다. PO 촉매의 함량이 0에서 2.5 g으로 증가할수록 반응 시간은 약 79초에서 약 38초로 감소함을 보였고, 특히 젤 타임, 택 프리 타임의 단축에 기여하였으며, 최대 반응온도가 약 182에서 약 271 oC로 증가하였다. 단열 온도 상승법을 이용하여 전환율을 구하였고, 반응식의 상수들을 계산하였다. 반응속도상수 k0는 DMCHA 촉매의 양이 증가할수록 큰 값을 갖는 것을 확인하였고, PO 촉매의 경우 촉매량 증가와 큰 관계없이 유사한 값을 나타냈다.
The reaction behavior of rigid polyurethane foams were studied on the effects of gelling catalysts of amine type, such as; dimethylcyclohexyl amine (DMCHA) and of potassium type, such as; potassium octoate (PO). Rigid polyurethane foams were provided with polymeric 4,4'-diphenylmethane diisocyanate, polyester polyol, silicone surfactant, blowing agent and a few gelling catalysts. As the contents of catalyst, DMCHA increased from 0 to 2.0 g, the reaction
time decreased from ca. 330 to ca. 35 sec and due to the exothermic reaction, the maximum temperature increased from ca. 217 to ca. 234 oC, respectively. As the contents of PO increased from 0 to 2.5 g, the reaction time decreased from ca. 79 to ca. 38 sec and the maximum temperature increased from ca. 182 to ca. 271 oC, respectively. The kinetic parameters
were calculated and the conversions were based on the temperature rising method of adiabatic process. As the content of DMCHA increased, the rate constant k0 increased. But in the case of PO catalyst, k0 did hardly depend upon its amount, and showed us similar reaction rate constants.
- Kim C, Youn JR, Lee J, Korean J. Rheol., 9(4), 190 (1997)
- Becker WE, Reaction Injection Molding, Van Nostrand Reinhold Company, New York (1979)
- Volkert O, J. Cell. Plast., 31, 210 (1995)
- Parks KL, Beckman EJ, Polym. Eng. Sci., 36(19), 2404 (1996)
- Biesmans G, Colman L, Vandensande R, J. Colloid Interface Sci., 199(2), 140 (1998)
- Schilling SL, J. Cell. Plast., 36, 190 (2000)
- Lee Y, Kim W, Kim W, Polym.(Korea), 24(6), 744 (2000)
- Wang TL, Hsieh TH, Polym. Degrad. Stabil., 55, 95 (1997)
- Jackson GV, Leach AG, J. Phys. D.: Appl. Phys., 26, 740 (1993)
- Szycher M, Szycher’s Handbook of Polyurethanes, CRC Press, Bocaraton (1999)
- Wirpsza Z, Polyurethanes-Chemistry, Technology and Applications, Ellis Horwood, New York (1993)
- Hur MK, Kwak JM, Hur T, Polym.(Korea), 20(3), 392 (1996)
- Chu HS, Sung WF, J. Heat Transfer, 42, 2211 (1999)
- Woods G, The ICI Polyurthane Book, John Wiley&Sons, New York (1990)
- Kim HJ, J. Korean Inst. Gas., 5, 182 (2003)
- Duquesne S, Delobel R, Bars ML, J. Polym. Degrad. Stabil., 77, 333 (2002)
- Lipshitz SD, Macosko CW, J. Appl. Polym. Sci., 21, 2029 (1977)
- Steinle EC, Critchfield FE, Castro JM, Macosko CW, J. Appl. Polym. Sci., 25, 2317 (1980)