화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.13, No.9, 567-571, September, 2003
n-GaN/vanadium-based Ohmic 접촉 형성
Formation of Vanadium-based Ohmic Contacts to n-GaN
E-mail:
We investigate vanadium (V)-based Ohmic contacts on n-GaN (=$2.010^{18}$ ) as a function of annealing temperature. It is shown that the V (60 nm) contacts become Ohmic with specific contact resistances of Ω upon annealing at 650 and . The V(20 nm)/Ti(60 nm)/Au(20 nm)contacts produce very low specific contact resistances of $2.2 10^{-5}$ and$ 4.010^{-6}$ Ω when annealed at 650 and , respectively. A comparison shows that the use of the overlayers (Ti/Au) is very effective in improving Ohmic property. Based on the current-voltage measurement, Auger electron spectroscopy, glancing angle X-ray diffraction, and X-ray photoemission spectroscopy results, the possible mechanisms for the annealing temperature dependence of the Ohmic behavior of the V-based contacts are described and discussed.d.
  1. Strite S, Morkoc H, J. Vac. Sci. Technol. B, 10, 1237 (1992)
  2. Nakamura S, Mukai T, Senoh M, Appl. Phys. Lett., 64, 1687 (1994)
  3. Pearton SJ, Zolper JC, Shul RJ, Ren F, J. Appl. Phys., 86, 1 (1999)
  4. Bessolov VN, Lebedev MV, Binh NM, Friedrich M, Zahn DR, Semicond. Sci. Tehcnol., 13, 611 (1998)
  5. Jang JS, Park SJ, Seong TY, J. Vac. Sci. Technol. B, 17(6), 2667 (1999)
  6. Lee JL, Kim JK, Lee JW, Park YJ, Kim TI, Solid-State Electron., 43, 435 (1999)
  7. Zhou L, Lanford W, Ping AT, Adesida I, Yang JW, Khan A, Appl. Phys. Lett., 76, 3451 (2000)
  8. Jang JS, Park SJ, Seong TY, Appl. Phys. Lett., 76, 2898 (2000)
  9. Lee CS, Lin YJ, Lee CT, Appl. Phys. Lett., 79, 3815 (2001)
  10. Maeda T, Koide Y, Murakami M, Appl. Phys. Lett., 75, 4145 (1999)
  11. Kwak JS, Lee KY, Han JY, Cho J, Chae S, Nam H, Park Y, Appl. Phys. Lett., 79, 3254 (2001)
  12. Bermudez VM, Koleske DD, Wickenden AE, Appl. Surf. Sci., 126, 69 (1998)
  13. Song JO, Park SJ, Seong TY, Appl. Phys. Lett., 80, 3129 (2002)
  14. Luther BP, Mohney SE, Jackson TN, Khan MA, Chen Q, Yang JW, Appl. Phys. Lett., 70, 57 (1997)
  15. Lin ME, Ma Z, Huang FY, Fan ZF, Allen LH, Morkoc H, Appl. Phys. Lett., 64, 1003 (1994)
  16. Fan Z, Mohammad SN, Kim W, Aktas O, Botchkarev AE, Morkoc H, Appl. Phys. Lett., 68, 1672 (1996)
  17. Schweitz KO, Wang PK, Mohney SE, Gotthold D, Appl. Phys. Lett., 80, 1954 (2002)
  18. Readinger ED, Mohney SE, Pribicko TG, Wang JH, Schweitz KO, Chowdhury U, Wong MM, Dupuis RD, Pophristic M, Go SP, Electron. Lett., 38, 1230 (2002)
  19. Reeves GK, Harrison HB, IEEE Electron Device Lett., EDL-3, 111 (1982)
  20. Luther BP, Mohney SE, Jackson TN, Semicond. Sci. Technol., 13, 1322 (1998)
  21. Jang JS, Seong TY, J. Appl. Phys., 88, 3064 (2000)
  22. Binari SC, Rowland LB, Kruppa W, Kelner G, Doverspike K, Gaskill DK, Electron. Lett., 30, 1248 (1994)
  23. Sun J, Rickert KA, Redwing JM, Ellis AB, Himpsel FJ, Kuech TF, Applied Physics Letters, 76, 415 (2000)
  24. Landgren G, Ludeke R, Jugnet Y, Morar JF, Himpsel FJ, J. Vac. Sci. Technol., 2, 351 (1984)
  25. Jang JS, Lee CW, Park SJ, Seong TY, Ferguson IT, J. Electron. Mater., 31, 903 (2002)
  26. Kim HK, Han SH, Seong TY, Choi WK, Appl. Phys. Lett., 77, 1647 (2000)