화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.12, No.10, 825-830, October, 2002
탄화물첨가 TiC기지 서멧의 입성장 거동
Behaviors of Grain Growth in Carbide Added TiC Matrix Cermets
E-mail:
The growth rate of solid grains in TiC-XC-2vol% and TiC-XC-30vo1% Ni cermets, where X=Zr, W or Mo, was fitted to an equation of the form d 3 - do 3 =Kt. T Kt. The grain growth behavior during liquid phase sintering at 1673K decreased markedly with addition of Mo 2 C or WC and increased with addition of ZrC. The contiguity ratio was greater in the alloys with smaller growth rate constant and decreased with increasing Ni content in the TiC?Mo 2 C-Ni cermet. The grain growth mechanism could be explained by the effect of contiguous grain boundaries in restricting the overall grain growth.
  1. Storms EK, The Refractory Carbides, pp. 11, ed., Margrave JL, Academic Press, New York and London, (1967) (1967)
  2. Suzuki H, Hayashi K, Gawakatsu I, J. Jpn. Int Met, 31(9), 1100 (1967)
  3. German RM, Lliquid Phase Sintering, Plenum Press, New York, (1985) (1985)
  4. 鈴木壽, 超硬合金と燒結硬質村料(基礎と用), pp. 309, 丸善(株), (1986) (1986)
  5. Parikh NM, PARIKH NM, J. Amer. Ceram. Soc., 40, 335 (1957)
  6. Doi H, Science of Hard Materials, pp. 312, Adam Hilger Ltd., Bristol and Boston, (1984) (1984)
  7. Matsubara H, Sakuma T, Proc. of the International Institute of Sintering Symposium, pp. 1269, Elsrvier Applied Science, (1987) (1987)
  8. Warren R, J. Less-Com. Met., 17, 65 (1969)
  9. Warren R, J. Mater. Sci., 7, 1434 (1972)
  10. Exner HE, Z. Metallkde, 64, 273 (1973)
  11. Exner HE, Marita ES, Petzow G, Hausner H, Mod. Dev. Powder Met., 315 (1971)
  12. Lindau L, Stjernberg KG, Powder Met., 19, 210 (1976)
  13. Humenik M, Parikh NM, J. Am. Ceram. Soc., 39, 60 (1956)
  14. Parikh NM, Humenik M, J. Am. Ceram. Soc., 40, 315 (1957)
  15. Stover ER, Wulff J, Trans. Met. Soc. AIME, 215, 127 (1959)
  16. Fullman RL, Trans. Met. Soc. AIME, 197, 447 (1953)
  17. Gurland J, Trans. Met. Soc. AIME, 212, 452 (1958)
  18. Underwood EE, Quantitative Stereology, pp. 312, Addision-Wesley, Reading, MA, (1970) (1970)
  19. Yamamoto T, Jaroenworaluck A, Ikuhara Y, Sakuma T, J. Mater. Res., 14(11) (1999)
  20. 山家菱, 貞廣孟史, 粉體および粉末治金, 16, 190 (1969) (1969)
  21. Suzuki H, Hayashi K, Terada O, J. Japan Inst. Met., 35, 146 (1971)
  22. Moskowitz D, Humenik M, Jr., Modern Development in P/M, vol. 3, pp. 88, ed., Hausner HH, Plenum Press, N. Y. (1966) (1966)
  23. Suzuki H, Hayashi K, Terada O, J. Japan Inst. Met., 35, 936 (1971)
  24. Chermant JL, Coaster M, J. Microscopy, 109, 269 (1977)
  25. Wagner C, Z. Elektrochem., 65, 581 (1961)
  26. Greemwood GW, Acta Metall., 4, 243 (1956)
  27. Lifshitz IM, Slyozov VV, J. Phys. Chem. Solids, 19, 35 (1961)
  28. Sarian S, Wert HW, J. Appl. Phys., 37, 1675 (1966)
  29. Ardell AJ, Acta Metall., 20, 61 (1972)
  30. Exner HE, Fischmeister H, Arch. Eisenhuttenwesen, 37, 417 (1966)
  31. Hanitzsch E, Kahlweit M, Z. Phys. Chem., 57, 145 (1968)
  32. Hanitzsch E, Kahlweit M, Z. Phys. Chem., 65, 290 (1969)
  33. Hanitzsch E, Kahlweit M, Symposium on Industrial Crystallisation, 130 (1969)
  34. Warren R, Waldron MB, Powder Metallurgy, 15, 180 (1972)
  35. Voorhees PW, Glicksman ME, Metall. Trans., 15A, 1081 (1984)
  36. Yang SG, Mani SS, German RM, JOM, April, 11 (1990) (1990)
  37. Warren R, Waldron MB, Powder Met., 15, 180 (1972)
  38. Buist DS, Jackson B, Stephenson IM, Ford WF, White J, Trans. Brit. Ceramic Soc., 64, 173 (1965)
  39. Buist DS, Jackson B, Stepenson IM, Ford WF, White J, Trans. Brit. Ceramic Soc., 64, 173 (1965)
  40. Stephenson IM, White J, Trans. Brit. Ceramic Soc., 66, 443 (1967)
  41. Kim SS, Yoon DN, Acta Met., 31, 1151 (1983)