Korean Chemical Engineering Research, Vol.53, No.2, 247-252, April, 2015
탄화규소 결정상의 종류가 탄화규소 표면에 ZSM-5가 형성되는데 미치는 영향
Effect of SiC Crystal Phase on Growing ZSM-5 on the Surface of SiC
E-mail:
초록
α-상 과 β-상 두 가지 종류의 탄화규소(SiC) 입자 표면에 수열 합성 방법으로 ZSM-5 결정을 형성하였다. SiC는 50 μm 이상이 되는 크기의 입자를 사용하였으며, ZSM-5 결정이 SiC 표면에서부터 성장하도록 유도하기 위하여 합성 단계에 앞서 SiC 표면에 산화층을 형성하였으며, 수열합성 온도와 시간을 변화시켜 보았다. 그 결과 β-SiC는 900 °C 조건에서도 산화막이 형성되었으며, 특히 150 °C 합성 조건에서 ZSM-5가 β-SiC 표면에서부터 성장하였음이 뚜렷이 관찰되었다. 200 °C 조건에서는 ZSM-5의 결정의 크기가 성장할 뿐 아니라, 시간의 증가에 따라 결정의 형태가 뚜렷해지고 SiC 표면에 도포되는 양이 증가하는 것을 확인할 수 있었다.
ZSM-5 crystals grew on the surface of α-SiC and β-SiC particles by hydrothermal synthesis method. SiC particles which were > 50 μm of size were used, and oxide layer were developed on the surface of the particles to induce growth of ZSM-5 from the surface. Then, synthesis time and temperature condition were considered growing ZSM-5. In this study, oxide layer was formed on β-SiC at 900 °C in air, and it was controlled to grow ZSM-5 grew from the β-SiC
surface with 150 °C synthesis condition. This is due to Si-O-Si or Si-O-Al bond, which is basic framework of ZSM-5 can be easily formed, from the silicon oxide film on the surface of β-SiC. When the synthesis temperature was 200 °C, the size of ZSM-5 was increased, and it covered much area of the SiC surface with better crystal shapes with longer synthesis time.
- Baerlocher C, Meier WM, Olson DH, “Atlas of Zeolite Structure Types,” Vol 190. London, Elsevier (1996)
- van Donk S, Janssen AH, Bitter JH, de Jong KP, Catal. Rev.-Sci. Eng., 45(2), 297 (2003)
- Darthomeuf D, Mater. Chem. Phys., 17, 49 (1987)
- Meusinger J, Corma A, J. Catal., 159(2), 353 (1996)
- Weitkamp J, Solid State Ion., 131(1-2), 175 (2000)
- Argenauer RJ, Landolt GR, “Crystalline Zeolite ZSM-5 and Method of Preparing the Same,” US Patent 3,702,886 (1972)
- Olson DH, Haag WO, Lago RM, J. Catal., 61, 390 (1980)
- Yang GH, He JJ, Yoneyama Y, Tan YS, Han YZ, Tsubaki N, Appl. Catal. A: Gen., 329, 99 (2007)
- Lee YJ, Kim YW, Viswanadham N, Jun KW, Bae JW, Appl. Catal. A: Gen., 374(1-2), 18 (2010)
- Suzuki H, “Composite Membrane Having a Surface Layer of an Ultrathin Film of Cage-shaped Zeolite and Processes for Production Thereof,” US Patent 4,699,892 (1987)
- Rauscher M, Selvam T, Schwieger W, Freude D, Micropor. Mesopor. Mat., 75, 195 (2004)
- Louis B, Ocampo F, Yun HS, Tessonnier JP, Pereira MM, Chem. Eng. J., 161(3), 397 (2010)
- Eslava S, Iacopi F, Baklanov MR, Kirschhock CEA, Maex K, Martens JA, J. Am. Chem. Soc., 129(30), 9288 (2007)
- Seijger GBF, Oudshoorn OL, Van Kooten WEJ, Jansen JC, Van Bekkum H, Van Den Bleek CM, Calis HPA, Micropor. Mesopor. Mat., 39, 195 (2000)
- Ledoux MJ, Pham-Huu C, Cattech, 5, 226 (2001)
- Moene R, Makkee M, Moulijn JA, Appl. Catal. A: Gen., 167(2), 321 (1998)
- Krawiec P, Kaskel S, J. Solid State Chem., 179, 2281 (2006)
- Ivanova S, Vanhaecke E, Louis B, Libs S, Ledoux MJ, Rigolet S, Pham-Huu C, ChemSusChem, 1, 851 (2008)
- Losch P, Boltz M, Soukup K, Song IH, Yun HS, Louis B, Micropor. Mesopor. Mat., 188, 99 (2014)
- Jung EJ, Lee YJ, Kim SR, Kwon WT, Choi DJ, Kim Y, Adv. Appl. Ceram., 113, 352 (2014)
- Basso S, Tessonnier JP, Cuong PH, Ledoux MJ, Wine Gauthier, “Zeolite/SiC Composites and Their Use in Catalysis,” US Patent 7,179,764.
- Merle-Mejean T, Abdelmounm E, Quintard P, J. Mol. Struc., 349, 105 (1995)
- Kwon WT, Kim SR, Kim Y, Lee YJ, Won J, Park WK, Oh SC, Mater. Sci. Forum., 724, 45 (2012)
- Shirazi L, Jamshidi E, Ghasemi MR, Cryst. Res. Technol., 43, 1300 (2008)
- Nawaz Z, Xiaoping T, Fei W, Korean J. Chem. Eng., 26(6), 1528 (2009)
- Kim HG, Yang YC, Jeong KE, Kim TW, Jeong SY, Kim CU, Jhung SH, Lee KY, Korean Chem. Eng. Res., 51(4), 418 (2013)