화학공학소재연구정보센터
Applied Energy, Vol.141, 1-11, 2015
Performance characteristics of cross-flow membrane contactors for liquid desiccant systems
Membrane based indirect contact liquid desiccant dehumidification technology subsides the serious concern of liquid desiccant droplet carryover observed in conventional direct contact liquid desiccant systems. In the membrane contactor the air and liquid desiccant streams flow in alternate channels in cross-flow arrangement, separated by micro-porous semi-permeable hydrophobic membranes. Only water vapor can pass through the membranes but liquid desiccant cannot permeate. A two-dimensional steady-state mathematical model for semipermeable membrane based indirect contactors as dehumidifiers for liquid desiccant dehumidification applications has been developed. The model can predict the air and desiccant parameters inside the dehumidifier and the outlet parameters for a given input parameters. Five different membrane contactors have been fabricated and series of experiments have been conducted to validate the mathematical model. Aqueous solution of lithium chloride has been used as desiccant. The maximum deviations between experimental and predicted values are within +/- 10% for outlet specific humidity and outlet enthalpy of air, +/- 15% deviation in dehumidification effectiveness and +/- 20% deviation in enthalpy effectiveness. The distributions of major parameters viz, temperature, humidity, concentration, etc., within the contactor have been presented. Parametric analysis has been carried out to study the effects of membrane characteristics, contactor design, fluid flow rates, ambient conditions and desiccant concentration on the performance of the contactors. (C) 2014 Elsevier Ltd. All rights reserved.