화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.99, No.6, 2557-2571, 2015
Nonquaternary poly(diallylammonium) polymers with different amine structure and their biocidal effect on Mycobacterium tuberculosis and Mycobacterium smegmatis
Mycobacteria, especially Mycobacterium tuberculosis, are one of the most dangerous types of microorganisms to cause diseases and mortality. Due to the known distinctive structure of their cell wall, mycobacteria are resistant to majority of antibiotics and common chemical disinfectants, including quaternized low molecular weight and polymer biocides. In this work, nonquaternary protonated polydiallylamines (PDAAs) based on protonated monomers of the diallylamine (DAA) series have been synthesized, secondary s-PDAA and tertiary t-Me-PDAA and t-Et-PDAA (with Me and Et N-substituents). The antimicrobial actions of PDAAs on M. tuberculosis and Mycobacterium smegmatis have been studied, namely, dependences of the activity on the amine structure, length of alkyl N-substituents, M (w) of polymers, treatment time, and cell concentration. All PDAAs examined at different conditions have been found to exhibit strong bactericidal effect on M. smegmatis and M. tuberculosis, including "nonculturable" dormant M. tuberculosis cells. The quaternary counterpart poly(diallyldimethylammonium chloride) (PDADMAC) and current antibiotics rifampicin and ciprofloxacin have been also tested and shown to be significantly less efficient or inactive at all (at the maximum tested concentration of 500 mu g mL(-1)). s-PDAA appeared to be the most effective or exhibited similar activity to t-Me-PDAA, while t-Et-PDAA appeared to be less active, especially against M. tuberculosis. The results obtained indicate a key role of the nonquaternary ammonium groups in the mycobactericidal action of PDAAs. Examination under an optical microscope in the epifluorescence mode has evidenced damage of the inner membrane permeability of M. smegmatis cells under the impact of PDAAs after 20 min. Studies on electrophoretic mobility (zeta-potential) of M. smegmatis cells and some model liposomes in the presence of PDAAs have revealed a small negative charge of mycobacteria outer surface and recharge in the presence of PDAAs. A conclusion was made that bactericidal activity of PDAAs is related to the disturbance of the integrity of the mycobacterial cell wall followed by damage of the inner membrane permeability.