Applied Surface Science, Vol.316, 276-285, 2014
Size-controlled synthesis of monodisperse nickel nanoparticles and investigation of their magnetic and catalytic properties
Monodisperse nickel nanoparticles (NPs) with different size were synthesized via the thermal decomposition approach using nickel acetylacetonate as precursors and trioctylphosphine as surfactant in oleylamine. The structure and morphology of as-synthesized nickel NPs were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM) and selected area electron diffraction (SAED). The surface states of as-synthesized nickel NPs were characterized by Fourier transform infrared (FT-IR) spectra. The textural properties of as-synthesized nickel NPs were characterized by N-2 adsorption-desorption. The size of as-synthesized nickel NPs was found to be easily controlled by changing synthetic conditions, including P:Ni precursor ratio, reaction temperature, reaction time and oleylamine quantity, and the possible growth mechanism of nickel NPs was proposed. In addition, the magnetic measurements showed that the as-synthesized nickel NPs exhibited superparamagnetism characteristics at room temperature, and the saturation magnetization increased significantly with the increase in nickel NPs' size. Finally, the size-dependent catalytic properties of nickel NPs for cyclohexane dehydrogenation reaction were studied. The results demonstrated that the catalytic activity can be enhanced by decreasing the size of NPs, which indicated that the dehydrogenation reaction of cyclohexane on nickel NPs was structure sensitive reaction. (C) 2014 Elsevier B.V. All rights reserved.