화학공학소재연구정보센터
Applied Surface Science, Vol.319, 181-188, 2014
Effect of the composition of Ti alloy on the photocatalytic activities of Ti-based oxide nanotube arrays prepared by anodic oxidation
Three types of Ti-based oxide nanotube arrays are prepared by anodic oxidation of pure Ti and Ti alloys (Ti-0.2Pd and Ti-6Al-4V) in the glycol-2 wt% H2O-0.3 wt% NH4F solution. The nanotube arrays are characterized by a series of techniques, including SEM, TEM, EIS, XRD, EDS, ICP, XPS and UV-vis DRS, to elucidate the effect of alloying elements on the properties of titania nanotube arrays. The results suggest that aluminium and vanadium elements greatly slow down the growth rate and therefore decrease the yield of nanotube arrays. Al and V deteriorate the photoreactivity of the resultant nanotube arrays. The palladium inside the Ti-0.2Pd alloy-derived nanotube arrays cannot be detected by EDS or XPS, but is quantitatively determined by ICP analysis. Incorporation of Pd significantly improves the photocatalytic activity of the resultant titania nanotube arrays powder. The presence of Pd element not only enhances the light absorption, but also facilitates the separation of photogenerated charge carriers. The uniform doping of Pd into the microstructure endows nanotube arrays with resistance to sulphur poison and preferable stability for organic degradation. This study suggests that anodization of Ti alloys, rather than pure Ti metal, allows to produce micron-sized high-performance photocatalysts for environmental and energy applications. (C) 2014 Elsevier B.V. All rights reserved.