화학공학소재연구정보센터
Applied Surface Science, Vol.320, 414-428, 2014
Use of 3-aminopropyltriethoxysilane deposited from aqueous solution for surface modification of III-V materials
Focal plane arrays of strained layer superlattices (SLSs) composed of InAs/GaSb are excellent candidates for infrared imaging, but one key factor limiting their utility is the lack of a surface passivation technique capable of protecting the mesa sidewall from degradation. Along these lines, we demonstrate the use of aqueous 3-aminopropyl triethoxysilane (APTES) deposited as a surface functionalizing agent for subsequent polymer passivation on InAs and GaSb surfaces following a HCl/citric acid procedure to remove the conductive oxide In2O3. Using atomic force microscopy, variable angle spectroscopic ellipsometry, X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NE)(AFS), and modeling with density functional theory (DFT), we demonstrate that APTES films can successfully be deposited on III-V substrates by spin coating and directly compare these films to those deposited on silicon substrates. The HCl/citric acid surface preparation treatment is particularly effective at removing In2O3 without the surface segregation of In oxides observed from use of HCl alone. However, HCl/citric acid surface treatment method does result in heavy oxidation of both Ga and Sb, accompanied by segregation of Ga oxide to the surface. Deposited APTES layer thickness did not depend on the substrate choice, and thicknesses between 1 and 20 nm were obtained for APTES solution concentrations ranging from 0.1 to 2.5 vol %. XPS results for the N1s band of APTES showed that the content of ionic nitrogen was high (similar to 50%) for the thinnest films (similar to 1 nm), and decreased with increasing film thickness. These results indicate that APTES can indeed be used to form a silane surface layer to cover III-V materials substrates. Such APTES silane layers may prove useful in surface passivation of these materials alone, or as surface functionalizing agents for subsequent covalent binding with polymer overlayers like polyimide. Published by Elsevier B.V.