Applied Surface Science, Vol.320, 448-454, 2014
Fusion protein-based biofilm fabrication composed of recombinant azurin-myoglobin for dual-level biomemory application
In the present study, a fusion protein-based biofilm composed of a recombinant azurin-myoglobin (Azu-Myo) has been developed and confirmed its original electrochemical property for dual-level biomemory device application. For this purpose, the azurin was modified with cysteine residues for direct immobilization and conjugation. Then, the recombinant azurin was conjugated with the myoglobin via a sulfo-SMCC bifunctional linker using the chemical ligation method (CLM). The SDS-PAGE and UV-vis spectroscopy were performed to examine the fusion protein conjugates. The prepared Azu-Myo fusion protein was self-assembled onto Au substrate for the biofilm fabrication. Then, the atomic force microscopy (AFM) was used to confirm the immobilization and the surface-enhanced Raman spectroscopy (SERS) was carried out to the surface analysis. Also, the cyclic voltammetry (CV) was carried out to observe an electrochemical property of fabricated biofilm. As a result, the two pair of redox potential values was obtained for dual-level biomemory device application. Then, the dual-level biomemory function was verified by the multi-potential chronoamperometry (MPCA). The results indicate a new fabrication method and material combination for advances in bioelectronic device development. (C) 2014 Elsevier B.V. All rights reserved.
Keywords:Azurin-myoglobin fusion protein;Dual-level biomemory;Myoglobin;Atomic force microscopy;Multi-potential chronoamperometry