Automatica, Vol.51, 135-148, 2015
A secure control framework for resource-limited adversaries
Cyber-secure networked control is modeled, analyzed, and experimentally illustrated in this paper. An attack space defined by the adversary's model knowledge, disclosure, and disruption resources is introduced. Adversaries constrained by these resources are modeled for a networked control system architecture. It is shown that attack scenarios corresponding to denial-of-service, replay, zero-dynamics, and bias injection attacks on linear time-invariant systems can be analyzed using this framework. Furthermore, the attack policy for each scenario is described and the attack's impact is characterized using the concept of safe sets. An experimental setup based on a quadruple-tank process controlled over a wireless network is used to illustrate the attack scenarios, their consequences, and potential countermeasures. (C) 2014 Elsevier Ltd. All rights reserved.