화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.450, No.1, 347-352, 2014
A microplate assay for the coupled transglycosylase-transpeptidase activity of the penicillin binding proteins; a vancomycin-neutralizing tripeptide combination prevents penicillin inhibition of peptidoglycan synthesis
A microplate, scintillation proximity assay to measure the coupled transglycosylase transpeptidase activity of the penicillin binding proteins in Escherichia coli membranes was developed. Membranes were incubated with the two peptidoglycan sugar precursors UDP-N-acetyl muramylpentapeptide (UDP-MurNAc(pp)) and UDP-[H-3]N-acetylglucosamine in the presence of 40 mu M vancomycin to allow in situ accumulation of lipid II. In a second step, vancomycin inhibition was relieved by addition of a tripeptide (Lys-D-ala-D-ala) or UDP-MurNAc(pp), resulting in conversion of lipid II to cross-linked peptidoglycan. Inhibitors of the transglycosylase or transpeptidase were added at step 2. Moenomycin, a transglycosylase inhibitor, had an IC50 of 8 nM. Vancomycin and nisin also inhibited the assay. Surprisingly, the transpeptidase inhibitors penicillin and ampicillin showed no inhibition. In a pathway assay of peptidoglycan synthesis, starting from the UDP linked sugar precursors, inhibition by penicillin was reversed by a 'neutral' combination of vancomycin plus tripeptide, suggesting an interaction thus far unreported. (C) 2014 Elsevier Inc. All rights reserved.