화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.451, No.3, 431-435, 2014
Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium Clostridium acetobutylicum
Crotonase from Clostridium acetobutylicum (CaCRT) is an enzyme that catalyzes the dehydration of 3-hydroxybutyryl-CoA to crotonyl-CoA in the n-butanol biosynthetic pathway. To investigate the molecular mechanism underlying n-butanol biosynthesis, we determined the crystal structures of the CaCRT protein in apo- and acetoacetyl-CoA bound forms. Similar to other canonical crotonase enzymes, CaCRT forms a hexamer by the dimerization of two trimers. A crystal structure of CaCRT in complex with acetoacetyl-CoA revealed that Ser69 and Ala24 to be signature residues of CaCRT, which results in a distinct ADP binding mode wherein the ADP moiety is bound at a different position compared with other crotonases. We also revealed that the substrate specificity of crotonase enzymes is determined by both the structural feature of the alpha 3 helix region and the residues contributing the enoyl-CoA binding pocket. A tight formed alpha 3 helix and two phenylalanine residues, Phe143 and Phe233, aid CaCRT to accommodate crotonyl-CoA as the substrate. The key residues involved in substrate binding, enzyme catalysis and substrate specificity were confirmed by site-directed mutagenesis. (C) 2014 Elsevier Inc. All rights reserved.