화학공학소재연구정보센터
Biomacromolecules, Vol.15, No.10, 3634-3642, 2014
Self-Regulated Multifunctional Collaboration of Targeted Nanocarriers for Enhanced Tumor Therapy
Exploring ideal nanocarriers for drug delivery systems has encountered unavoidable hurdles, especially the conflict between enhanced cellular uptake and prolonged blood circulation, which have determined the final efficacy of cancer therapy. Here, based on controlled self-assembly, surface structure variation in response to external environment was constructed toward overcoming the conflict. A novel micelle with mixed shell of hydrophilic poly(ethylene glycol) PEG and pH responsive hydrophobic poly(beta-amino ester) (PAE) was designed through the self-assembly of diblock amphiphilic copolymers. To avoid the accelerated clearance from blood circulation caused by the surface exposed targeting group c(RGDfK), here c(RGDfK) was conjugated to the hydrophobic PAE and hidden in the shell of PEG at pH 7.4. At tumor pH, charge conversion occurred, and c(RGDfK) stretched out of the shell, leading to facilitated cellular internalization according to the HepG2 cell uptake experiments. Meanwhile, the heterogeneous surface structure endowed the micelle with prolonged blood circulation. With the self-regulated multifunctional collaborated properties of enhanced cellular uptake and prolonged blood circulation, successful inhibition of tumor growth was achieved from the demonstration in a tumor-bearing mice model. This novel nanocarrier could be a promising candidate in future clinical experiments.