Biomacromolecules, Vol.16, No.2, 578-588, 2015
Biosynthesis, Characterization, and Hemostasis Potential of Tailor-Made Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Produced by Haloferax mediterranei
We report the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) random copolymers (R-PHBV) or higher-order copolymers (O-PHBV) in Haloferax mediterranei, with adjustable 3-hydroxyvalerate (3HV) incorporation by cofeeding valerate with glucose. Their microchemical structure, molecular weight and its distribution, and thermal and mechanical properties were characterized by NMR, GPC, DSC, TGA, and universal testing machine, respectively. 13C NMR studies showed that O-PHBV copolymers consisted of short segments of PHB and PHV covalently linked together with random PHBV segments. Consistently, two Tg were observed in the DSC curves of O-PHBV. The blocky feature of O-PHBV enhanced crystallinity percentages and improved Youngs modulus. Notably, the film of one O-PHBV copolymer, O-PHBV-1, showed unique foveolar cluster-like surface morphology with high hydrophobicity and roughness, as characterized using static contact angle and SEM and AFM analyses. It also exhibited increased platelet adhesion and accelerated blood clotting. The excellent hemostatic properties endow this copolymer with great potential in wound healing.