- Previous Article
- Next Article
- Table of Contents
Biotechnology Letters, Vol.36, No.10, 2143-2153, 2014
Transitory improvement of articular cartilage characteristics after implantation of polylactide:polyglycolic acid (PLGA) scaffolds seeded with autologous mesenchymal stromal cells in a sheep model of critical-sized chondral defect
Clinical translation of emerging technologies aiming at cartilage resurfacing is hindered by neither the appropriate scaffold design nor the optimal cell source having been defined. Here, critical-sized, chondral-only focal defects were created in sheep and treated with clinical-grade, co-polymeric poly-lactide:polyglycolic acid scaffolds either alone or seeded with 3.3 x 10(6) +/- A 0.4 x 10(6) autologous bone marrow-derived mesenchymal stromal cells and studied over 12 month follow-up. An untreated group was included for comparison. Second-look arthroscopy performed at 4 months post-treatment evidenced the generation of neocartilage of better quality in those defects treated with cells. However, macroscopic scores in the cell-treated group declined significantly from 7.5 +/- A 2.3 at 4 months to 3.1 +/- A 2.6 (p = 0.0098) at 12 months post-treatment, whereas the other two experimental groups remained unaltered during 4-12 month post-treatment. The effectiveness of the cell-based approach proposed in this study is thus restricted to between months 1 and 4 post-treatment.
Keywords:Critical-sized chondral defect;Mesenchymal stromal cells;Polylactide:polyglycolic acid preclinical animal model;Regenerative medicine;Scaffold;Second-look arthroscopy;Sheep