화학공학소재연구정보센터
Chemical Engineering & Technology, Vol.37, No.9, 1500-1506, 2014
Feasibility of a Co Oxygen Carrier for Chemical Looping Air Separation: Thermodynamics and Kinetics
Chemical looping air separation (CLAS) is based on the chemical looping principle: oxygen carriers release oxygen to carrier gas in a reduction reactor and absorb oxygen from air in an oxidation reactor. High oxygen transport capacity, high reactivity in reduction and oxidation reactions, and resistance to attrition and agglomeration are some of the criteria that feasible oxygen carrier materials should fulfill. Thermodynamic analysis was applied to prove the potential of Co3O4 as oxygen carrier. ZrO2 served as binder to improve the anti-sintering property and reactivity. Kinetic experiments were performed to determine the reaction rate and conversion of the oxygen carrier. Stability and durability of the oxygen carrier were characterized before and after cyclic experiments. The Co/Zr oxygen carrier proved to be a suitable candidate for the CLAS process.