화학공학소재연구정보센터
Chemical Engineering Communications, Vol.202, No.3, 402-407, 2015
An Efficient Numerical Scheme to Solve a Quintic Equation of State for Supercritical Fluids
In this study, an efficient iterative algorithm is devised to handle a nonlinear equation arising in estimation of thermodynamic properties at supercritical conditions. The approach is based on a synergistic combination of the classic Newton-Raphshon algorithm and the Adomian decomposition method. We demonstrate that the proposed method enjoys a higher degree of accuracy while requiring fewer iterations to reach a specific solution compared to that by the Newton-Raphson algorithm. To illustrate the efficiency of the aforementioned solution technique, several numerical examples are provided. The proposed method has been easily implemented in computer codes to provide parametric, not just numeric, solutions to the model equations. Consequently, one can derive other thermodynamic properties, which have not been treated parametrically to date, based on our new combined approach.