Electrochimica Acta, Vol.136, 292-300, 2014
One-pot synthesis of reduced graphene oxide supported PtCuy catalysts with enhanced electro-catalytic activity for the methanol oxidation reaction
The outstanding performance PtCuy (y = 1,2,3) alloy nanoparticles supported on reduced graphene oxide (rGO) have been synthesized by a facile, efficient, one-pot hydrothermal synthesis approach. The as-prepared PtCuy/rGO catalysts are comprehensively characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy. Cyclic voltammetry, CO-stripping voltammetry and chronoamperometry results reveal that the PtCuy/rGO catalysts have higher electro-catalytic activity, more negative onset oxidative potential, more excellent tolerance ability for CO poisoning and enhanced stability for the electro-oxidation of methanol compared to pure Pt/rGO. As far as the as-made PtCuy/rGO catalysts are concerned, the PtCu2/rGO exhibits the highest electro-catalytic activity. The mechanism of the promoting effect of Cu on Pt is explained based on the electronic modification effect. The nature of interfacial interactions between the Pt-Cu active metal phase and the rGO supporting materials is crucial to achieving high performance. (C) 2014 Elsevier Ltd. All rights reserved.
Keywords:One-pot synthesis;Platinum-copper;Methanol electro-oxidation;Reduced graphene oxide;Nanoparticles