Electrochimica Acta, Vol.136, 355-362, 2014
Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries
A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg(-1) at a current of 100mAg(-1) as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li+ ions diffusion and large electrode-electrolyte contact area for high Li+ ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries. (C) 2014 Elsevier Ltd. All rights reserved.