Energy, Vol.76, 477-486, 2014
Perovskite catalysts enhanced combustion on porous media
The effects of La-Sr-Fe-Cr-Ru based perovskite catalysts, on matrix stabilized combustion in a porous ceramic media are explored. Highly porous silicon carbide ceramics are used as a porous media for a catalytically enhanced superadiabatic combustion of a lean mixture of methane and air. The direct observation of the flame during the combustion becomes possible due to a specially designed stainless steel chamber incorporating a quartz window where the initiation and propagation of the combustion reaction/flame was directly visible. Perovskite catalytic enhancement of SiC porous matrix with La0.75Sr0.25Fe0.6Cr0.35Ru0.05O3, La0.75Sr0.25Fe0.6Cr0.4O3, La0.75Sr0.25Fe0.95Ru0.05O3, La0.75Sr0.05Cr0.95Ru0.05O3, and LaFe0.95Ru0.05O3 were used to enhance combustion. The flammability limits of the combustion of methane and air were explored using both inert and catalytically enhanced surfaces of the porous ceramic media. By coating the SiC porous media with perovskite catalysts it was possible to lower the minimum stable equivalence ratio and achieve more efficient combustion. (C) 2014 Elsevier Ltd. All rights reserved.