화학공학소재연구정보센터
Industrial & Engineering Chemistry Research, Vol.53, No.35, 13736-13749, 2014
Locally Weighted Kernel Principal Component Regression Model for Soft Sensing of Nonlinear Time-Variant Processes
The principal component regression (PCR) based soft sensor modeling technique has been widely used for process quality prediction in the last decades. While most industrial processes are characterized with nonlinearity and time variance, the global linear PCR model is no longer applicable. Thus, its nonlinear and adaptive forms should be adopted. In this paper, a just-in-time learning (JITL) based locally weighted kernel principal component regression (LWKPCR) is proposed to solve the nonlinear and time-variant problems of the process. Soft sensing performance of the proposed method is validated on an industrial debutanizer column and a simulated fermentation process. Compared to the JITL-based PCR, KPCR, and LWPCR soft sensing approaches, the root-mean-square errors (RMSE) of JITL-based LWKPCR are the smallest and the prediction results match the best with the actual outputs, which indicates that the proposed method is more effective for quality prediction in nonlinear time-variant processes.