화학공학소재연구정보센터
Inorganic Chemistry, Vol.54, No.1, 38-46, 2015
Methionine Ligand Lability of Homologous Monoheme Cytochromes c
Direct electrochemical analysis of adsorbed bacterial monoheme cytochromes c has revealed a phenomenological loss of the axial methionine when examined using pyrolytic edge-plane graphite (EPG) electrodes. While prior findings have reported that the Met-loss state may be quantitatively understood using the cytochrome c from Hydrogenobacter thermophilus as a model system, here we demonstrate that the formation of the Met-loss state upon EPG electrodes can be observed for a range of cytochrome orthologs. Through an electrochemical comparison of the wild-type proteins from organisms of varying growth temperature optima, we establish that Met-ligand losses at graphite surfaces have similar energetics to the foldons for known protein folding pathways. Furthermore, a downward shift in reduction potential to approximately -100 mV vs standard hydrogen electrode was observed, similar to that of the alkaline transition found in mitochondrial cytochromes c. Pourbaix diagrams for the Met-loss forms of each cytochrome, considered here in comparison to mutants where the Met-ligand has been substituted to His or Ala, suggest that the nature of the Met-loss state is distinct from either a His-/aquo- or a bis-His-ligated heme center, yet more closely matches the pK(a) values found for bis-His-ligated hemes., We find the propensity for adoption of the Met-loss state in bacterial monoheme cytochromes c scales with their overall thermal stability, though not with the specific stability of the Fe-Met bond.