Journal of Adhesion Science and Technology, Vol.29, No.7, 609-624, 2015
Sawtooth-shaped stringiness with front frame formation for polyacrylic pressure-sensitive adhesives with two different molecular structures
The formation of sawtooth-shaped stringiness during 90 degrees peeling was investigated using crosslinked poly(n-butyl acrylate-acrylic acid) and poly(2-ethylhexyl acrylate-acrylic acid) random copolymers with an acrylic acid content of 5 wt.% and different crosslinking degrees as pressure-sensitive adhesives (PSAs). The gel fraction was measured by toluene extraction of PSA, and it increased with crosslinker content for both systems. The observed stringiness was sawtooth-shaped, but there were three different types; both the typical sawtooth shape and the frame formed at the front tip with interfacial failure, and the sawtooth shape formed with cohesive failure. The change in the stringiness shape was affected strongly by the gel fraction of PSA. The peel rate under constant peel load was measured and revealed that the peel rate was lowest upon formation of the front frame type. A good relation was found between peel rate and peel strength, with a greater peel strength upon formation of the front frame type. The concentrated stress at the peeling tip is released by progress of peeling and deformation of the adhesive layer (stringiness) for no frame type. On the other hand, the sufficient interfacial adhesion delays the progress of peeling, and the applied larger stress causes cavitation in the PSA layer for front frame type. The formed cavity grows and the front frame type formed as a result. That is, internal deformation occurred preferentially over peeling. In order to improve the peel strength, the front frame type is the most useful stringiness shape.