Journal of Colloid and Interface Science, Vol.435, 156-163, 2014
A facile one-step solvothermal synthesis of bismuth phosphate-graphene nanocomposites with enhanced photocatalytic activity
A facile one-step solvothermal approach was developed to synthesize BiPO4-graphene (BP-RGO) nanocomposites using ethylene glycol/water as the solvent and reducing agent. During the solvothermal reaction, both the effective reduction of graphene oxide (GO) and the growth of rod-shaped BiPO4 as well as its deposition on graphene occurred simultaneously. The as-obtained BP-2%RGO nanocomposite showed the highest photocatalytic activity toward the photodegradation of methyl orange (MO), which was about 2.0 and 1.5 times as high as that of pure BiPO4 and physical mixture of BiPO4 and graphene, respectively. The enhanced photocatalytic activity of BP-2%RGO nanocomposite is attributed to a larger surface area, much increased adsorption capacity, and more effective charge transportations and separations arisen from the introduction of graphene along with the intimate interfacial contact between BiPO4 and graphene. This work highlights the significant effect of solvothermal method and introduction of graphene on the photoactivity of graphene-based nanocomposites. It is expected that this method could aid to fabricate more efficient graphene-based photocatalysts with improved interfacial contact and photocatalytic performance for environmental remediation. (C) 2014 Published by Elsevier Inc.