Journal of Loss Prevention in The Process Industries, Vol.30, 243-255, 2014
Phast validation of discharge and atmospheric dispersion for pressurised carbon dioxide releases
The consequence modelling package Phast examines the progress of a potential incident from the initial release to the far-field dispersion including the modelling of rainout and subsequent vaporisation. The original Phast discharge and dispersion models allow the released substance to occur only in the vapour and liquid phases. The latest versions of Phast include extended models which also allow for the occurrence of fluid to solid transition for carbon dioxide (CO2) releases. As part of two projects funded by BP and Shell (made publicly available via CO2PIPETRANS JIP), experimental work on CO2 releases was carried out at the Spadeadam site (UK) by GL Noble Denton. These experiments included both high-pressure steady-state and time-varying cold releases (liquid storage) and high-pressure time-varying supercritical hot releases (vapour storage). The CO2 was stored in a vessel with attached pipework. At the end of the pipework a nozzle was attached, where the nozzle diameter was varied. This paper discusses the validation of Phast against the above experiments. The flow rate was predicted accurately by the Phast discharge models (within 10%; considered within the accuracy at which the BP experimental data were measured), and the concentrations were found to be predicted accurately (well within a factor of two) by the Phast dispersion model (UDM). This validation was carried out with no fitting whatsoever of the Phast extended discharge and dispersion models. (C) 2013 Elsevier Ltd. All rights reserved.
Keywords:Carbon dioxide;Consequence modelling;Model validation;Discharge;Atmospheric dispersion;Thermodynamics