Journal of Materials Science, Vol.49, No.23, 8095-8106, 2014
A novel method for net-shape manufacturing of metal-metal sulfide cermets
Ceramic-metal composites (cermets) offer unique combinations of hardness and toughness, which make them attractive for a variety of applications. In this study, we propose a new method for the preparation of the metal-sulfur precursor mixture based on the ability to melt-cast the precursor mixture. We have used self-propagating high-temperature synthesis to produce a chromium/chromium sulfide cermet, exploiting the fact that this mixture of metal and sulfur can support the propagation of reactive waves. This ability, together with the properties of the reaction products (low gas evolution and liquid sulfide products), enables the net-shape synthesis of dense, near theoretical density product with a relatively simple and low-cost set-up. While the thermochemical calculations predict near-zero gas production for the chromium-sulfur system, the actual cermets showed a large amount of porosity (about 70 %), when synthesized at atmospheric pressure. The possible sources for porosity were identified, and the process improved to bring the porosity down to about 7 %. We also investigated the physical properties of the produced cermet with optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction techniques.