화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.118, No.40, 11723-11737, 2014
Molecular Dynamics Simulations of DPPC/CTAB Mono layers at the Air/Water Interface
An atomistic-level understanding of cationic lipid monolayers is essential for development of gene delivery agents based on cationic micelle-like structures. We employ molecular dynamics (MD) simulations for a detailed atomistic study of lipid monolayers composed of both pure zwitterionic dipalmitoylphosphatidylcholine (DPPC) and a mixture of DPPC and cationic cetyltrimethylammonium bromide (CTAB) at the air/water interface. We aim to investigate how the composition of the DPPC/CTAB monolayers affects their structural and electrostatic properties in the liquid-expanded phase. By varying the molar fraction of CTAB, we found the cationic CTAB lipids have significant condensing effect on the DPPC/CTAB monolayers, i.e., at the same surface tension or surface pressure, monolayers with higher CTAB molar fraction have smaller area per lipid. The DPPC/CTAB monolayers are also able to achieve negative surface tension without introducing buckling into the monolayer structure. We also found the condensing effect is caused by the interplay between the cationic CTAB headgroups and the zwitterionic phosphatidylcholine (PC) headgroups which has electrostatic origin. With CTAB in its vicinity, the PN vector of PC headgroups reorients from being parallel to the monolayer plane to a more vertical orientation. Moreover, detailed analysis of the structural properties of the monolayers, such as the density profile analysis, hydrogen bonding analysis, chain order parameter calculations, and radial distribution function calculations were also performed for better understanding of cationic DPPC/CTAB monolayers.