Journal of Energy Resources Technology-Transactions of The ASME, Vol.120, No.2, 137-142, 1998
Thermodynamics of insulated pressure vessels for vehicular hydrogen storage
This paper studies the application of insulated pressure vessels for hydrogen-fueled light-duty vehicles. insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH2); low-temperature (46 K) compressed hydrogen (CH2); or ambient-temperature CH2. In this analysis, hydrogen temperatures, pressures, and venting losses are calculated for insulated pressure vessels fueled with LH2 or with low-temperature CH2, and the results are compared to those obtained in low-pressure LH2 ranks. Hydrogen losses are calculated as a function of daily driving distance during normal operation; as a function of time during long periods of vehicle inactivity; and as a function of initial vessel temperature during fueling. The results show that insulated pressure vessels have packaging characteristics comparable or better than those of conventional, low-pressure LH2 tanks, with greatly improved dormancy and much lower boil-off, and therefore appear to be a good alternative for vehicular hydrogen storage.