화학공학소재연구정보센터
Journal of Energy Resources Technology-Transactions of The ASME, Vol.120, No.2, 143-148, 1998
Efficiency optimizations of an irreversible Brayton heat engine
A steady-flow approach for finite-time thermodynamics is used to calculate the maximum thermal efficiency, its corresponding power output, adiabatic temperature ratio, and thermal-conductance ratio of heat transfer equipment of a closed Brayton heat engine. The physical model considers three types of irreversibilities: finite thermal conductance between the working fluid and the reservoirs, heat leaks between the reservoirs, and internal irreversibility inside the closed Brayton heat engine. The effects of heat leaks, hot-cold reservoir temperature ratios, turbine and compressor isentropic efficiencies, and total conductances of heat exchangers on the maximum thermal efficiency and its corresponding parameters are studied. The optimum conductance ratio could be found to effectively use the heat transfer equipment, and this ratio is increased as the component efficiencies and total conductances of heat exchangers are increased, and always less than or equal to 0.5.