화학공학소재연구정보센터
Journal of the American Ceramic Society, Vol.98, No.1, 163-170, 2015
The Sintering Trajectory and Electrical Properties of Niobium-Doped Titania Sputtering Targets
Nb-doped TiO2 (TNO) films, which are highly conductive and transparent, can be used as transparent conductive oxide (TCO) films. A predominant manufacturing method for TCO film is magnetron sputtering, and the material of the sputtering target affects the performance of the film. The objective of this study was to investigate the sintering densification, microstructure, and electrical properties of TNO and TiO2 sputtering targets. The results showed that the segregation of Nb at the grain boundary in TNO helps to facilitate densification and inhibit grain growth. After 1200 degrees C sintering, the sintered density of TNO target achieves almost 100% of the theoretical density. Moreover, the Nb2O5 additive greatly improves the electrical properties, decreasing the resistivity of TiO2 from >10(8)cm to 4.6x10(1)cm. Correlations between TNO sputtering target investigated in this study and TNO sputtered film reported in the literature are also preliminarily established. The resistivity of TNO film with an anatase structure is obviously lower than that of TNO target with a rutile structure.