Langmuir, Vol.30, No.38, 11272-11283, 2014
Molecular Dynamics Simulations: Insight into Molecular Phenomena at Interfaces
Molecular dynamics simulations, when aptly devised, can enhance our fundamental understanding of a system, set up a platform for testing theoretical predictions, and provide insight and a framework for further experimental studies. This feature article highlights the importance of molecular dynamics simulations in understanding interfacial phenomena using three case studies involving liquid-liquid and solid-liquid interfaces. After briefly reviewing molecular dynamics methods, we discuss velocity slip at a liquid-liquid interface, the coalescence of liquid drops in suspension and in free space, and the behavior of colloidal nanoparticles at a liquid-liquid interface. We emphasize the utility of simple intermolecular potentials and generic liquids. The case studies exemplify the significant insight gained through the molecular modeling approach regarding the interfacial phenomena studied. We conclude the highlight with a brief discussion illustrating potential shortcomings and pitfalls of molecular dynamics simulations.