화학공학소재연구정보센터
Langmuir, Vol.30, No.44, 13438-13446, 2014
An Underwater Superoleophobic Surface That Can Be Activated/Deactivated via External Triggers
Poly[(2-dimethylamino)ethyl methacrylate] (pDMAEMA) brush surfaces were prepared using a facile aqueous Activators ReGenerated by Electron Transfer Atom Transfer Radical Polymerization (ARGET-ATRP) protocol at ambient temperature without any need to purge reaction solutions of oxygen. This produced underwater superoleophobic surfaces, which exhibited high advancing (theta(A), 164-166 degrees) and receding (theta(R), 153-165 degrees) contact angles (CAs) and low CA hysteresis (1-11 degrees) with a variety of oils. Both in situ spectroscopic ellipsometry and dynamic CA measurements confirmed that pDMAEMA brush surfaces responded to three different external stimuli (pH, ionic strength, and temperature) by changing their thicknesses, degree of hydration, or their chemical composition. Increasing pH resulted in the largest decrease in hydration, followed by increasing temperature, and increasing ionic strength gave the smallest change in hydration. Coincident with these structural changes, stimulus-responsive dynamic dewetting behavior with various oils was observed. Increasing pH or ionic strength drastically reduced the theta R values of oil drops and increased CA hysteresis, resulting in a sticky surface on which oil drops were pinned. No noticeable changes in dynamic oleophobicity were observed with increasing temperature. In addition, when oil drops impacted onto the brush surface instead of being gently placed, surfaces did not exhibit stimulus-responsive dewetting properties, being oleophobic under all conditions.