Langmuir, Vol.30, No.46, 13979-13986, 2014
Synthesis and Spectroscopic Characterization of Chiral Biphenyl-Cholesterol Gels
The synthesis of 4-(3-cholesteroxycarbonylpropyloxy)biphenyl (BO4-chol), 4-(7-cholesteroxycarbonylheptyloxy)biphenyl (BO8-chol), and 4,4'-bis(7-cholesteroxycarbonyl heptyloxy)biphenyl (BBO8-chol) is reported. These gelators form 1% and 2% (w/w) stable gels in n-octanol. The gels formed from single cholesterol gelators (BO4-chol and BO8-chol) exhibit lower phase transition temperatures (T-g) (62-65, 68-69 degrees C) than the gel obtained from the bischolesterol gelator BBO8-chol (96-98 degrees C). All three gelators form chiral gels in n-octanol as observed by induced circular dichroism (ICD) spectroscopy. The effect of two cholesterol moieties versus one cholesterol unit linked to a biphenyl molecule by a flexible chain, and the effect of the chain length on the gelation ability of these three novel gelators was investigated by circular dichroism (CD), absorption, and fluorescence spectroscopies. The gels obtained from BO4-chol and BO8-chol exhibit biphasic circular dichroism spectra with opposite chirality. The ICD spectra of both BO8-chol and BBO8-chol gels show a positive ICD band followed by a negative band at room temperature. However, while BO8-chol gel ICD absorptions decrease equally as temperature increases, BBO8-chol gel shows an inversion of the Cotton effect bands between 50 and 60 degrees C until completely disappearing above the phase transition temperature. SEM was used for the investigation of the morphology of the xerogels. On the basis of XRD data and molecular modeling, we propose packing modes for the formation of the organogelator aggregates.