Langmuir, Vol.30, No.49, 14734-14744, 2014
Electrical Perturbations of Ultrathin Bilayers: Role of Ionic Conductive Layer
The effect of electrostatic force on the dynamics, morphological evolution, and drainage time of ultrathin liquid bilayers (<100 nm) are investigated for perfect dielectric-perfect dielectric (PD-PD) and ionic liquid-perfect dielectric (IL-PD) bilayers. The weakly nonlinear thin film equation is solved numerically to obtain spatiotemporal evolution of the liquid-liquid interface responses to transverse electric field. In order to predict the electrostatic component of conjoining/disjoining pressure acting on the interface for IL-PD bilayers, an analytical model is developed using the nonlinear Poisson-Boltzmann equation. It is found that IL-PD bilayers with electric permittivity ratio of layers (lower to top), epsilon(r), greater than one remain stable under an applied electric field. An extensive numerical study is carried out to generate a map based on epsilon(r) and the initial mean thickness of the lower layer. This map is used to predict the formation of various structures on PD-PD bilayer interface and provides a baseline for unstable IL-PD bilayers. The use of an ionic liquid (IL) layer is found to reduce the size of the structures, but results in polydispersed and disordered pillars spread over the domain. The numerical predictions follow similar trend of experimental observation of Lau and Russel. (Lau, C. Y.; Russel, W. B. Fundamental Limitations on Ordered Electrohydrodynamic Patterning; Macromolecules 2011, 44, 7746-7751).