화학공학소재연구정보센터
Macromolecules, Vol.47, No.19, 6572-6579, 2014
A Bicyclo[4.2.0]octene-Derived Monomer Provides Completely Linear Alternating Copolymers via Alternating Ring-Opening Metathesis Polymerization (AROMP)
Strained bicyclic carbomethoxy olefins were utilized as substrates in alternating ring-opening metathesis polymerization and found to provide low-dispersity polymers with novel backbones. The polymerization of methyl bicyclo[4.2.0]oct-7-ene-7-carboxylate with cyclohexene in the presence of the fast-initiating Grubbs catalyst (H(2)IMes)(3-Br-Pyr)(2)Cl2Ru=CHPh leads to a completely linear as well as alternating copolymer, as demonstrated by NMR spectroscopy, isotopic labeling, and gel permeation chromatography. In contrast, intramolecular chain-transfer reactions were observed with [5.2.0] and [3.2.0] bicyclic carbomethoxy olefins, although to a lesser extent than with the previously reported monocyclic cyclobutenecarboxylic ester monomers [Song, A.; Parker, K A.; Sampson, N. S. J. Am. Chem. Soc. 2009, 131, 3444]. Inclusion of cyclohexyl rings fused to the copolymer backbone minimizes intramolecular chain-transfer reactions and provides a framework for creating alternating functionality in a one-step polymerization.