Materials Chemistry and Physics, Vol.149, 172-178, 2015
Enhanced piezoelectric and mechanical properties of electroactive polyvinylidene fluoride/iron oxide composites
This work describes the preparation and characterization of polyvinylidene fluoride (PVDF)/iron oxide composites fabricated from monodispersed 6 nm iron oxide nanoparticles in the crystalline form of magnetite (Fe3O4) and polyvinylidene fluoride in a mixed solvent system (THF/DMF) through the solution mixing technique. Structural analysis using transmission electron microscopy shows that the 6 nm iron oxide nanoparticles are uniformly distributed in PVDF matrix. The piezoelectric responses of PVDF/iron oxide composites are extensively increased about five times in magnitude with applied electrical field poling at 35 MV/m. Mechanical properties of the fabricated 2 wt% PVDF/iron oxide composites measured by dynamic mechanical analysis indicate significant enhancements in the storage modulus when compared to that of neat PVDF. The incorporation of 2 wt% iron oxide nanoparticles into the PVDF matrix improves the thermal stability about 28 C as compared to that of PVDF. The effect of iron oxide on the isothermal degradation behavior of PVDF is also investigated. (C) 2014 Elsevier B.V. All rights reserved.