Polymer Bulletin, Vol.71, No.12, 3261-3273, 2014
Exfoliation of organic montmorillonite in iPP free of compatibilizer through the multistage stretching extrusion
Polypropylene (PP)/organic montmorillonite (OMMT) nanocomposites were first prepared through twin-screw extruder and then subjected to multistage stretching extrusion with an assembly of laminating-multiplying elements (LMEs, which divide and recombine polymer melts). The exfoliated efficiency of LMEs on OMMT dispersed in PP matrix was investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and X-ray diffraction. Because of the absence of compatibilizer, molecular chains of PP were not intercalated into the galleries of OMMT during the multistage stretching extrusion. The exfoliation of OMMT was induced by the strong force occurred in LMEs, which can destruct van der Waal's interaction between the laminate OMMT platelets. The exfoliation degree of OMMT has been improved with the increase of number of LMEs used. The dispersion morphology of OMMT was thermodynamically stable after secondary melt processing. As a result, the mechanical properties of composites have been enhanced with increasing LME number. We realized the exfoliation of OMMT by the function of strong shear field without the incorporation of compatibilizer.