화학공학소재연구정보센터
Minerals Engineering, Vol.23, No.4, 339-349, 2010
Gravity separation of coarse particles using the Reflux Classifier
A comprehensive study examining the potential of the Reflux Classifier to be applied to the beneficiation of coarser coal up to 8 mm in size was undertaken. It was demonstrated that efficient combustible recovery and control of the separation density to target low ash products could be achieved. The major finding from the study was the critical importance of providing sufficient fluidization water, though beyond the critical level the process was largely insensitive to the fluidization rate. It was concluded the required fluidization velocity is nominally 10 m/h per mm of top-size, hence for a nominal 4 mm top size the required velocity is 40 m/h. In an extended campaign the control of the process was investigated by varying the set point density from high to low levels and then returning the process to the original settings, and demonstrating a return to the original separation. Further analysis was conducted to determine the partition curves and the shift in the separation density with particle size. The variation in the D(50) with particle size approaches a level that is independent of the particle size. Previous data (Galvin et al., 2002, 2004) covering particles up to 2 mm in size are consistent with the results from this study, involving feeds with top sizes of 4 mm and 8 mm. Beyond a particle size of 2 mm the Ep is typically less than 0.05 and approaches about 0.03 as the particle size increases to 8 mm. (C) 2009 Elsevier Ltd. All rights reserved.