화학공학소재연구정보센터
Process Safety and Environmental Protection, Vol.92, No.6, 532-544, 2014
A mathematical approach for retrofit and optimization of total site steam distribution networks
This paper presents a generic mathematical model for retrofitting the steam power plants in an industrial site. The industrial sector under review consists of one steel mill, one oil refinery, and several petrochemical plants, where only small-scale steam integration has been implemented before this study. The relevant unit models in a typical steam power plant are established, and the steam plant retrofit problem is formulated as a mixed-integer nonlinear program (MINLP). Feasible retrofit alternatives suggested by experienced field engineers are investigated in sequence to examine the revenue of those possible modifications. The first scenario examines operational optimization of existent plants; the second option allows installation of one new turbine and replacement of several boilers and turbines with lower efficiency; the third scenario considers using a steam ejector to upgrade the disqualified import steam in the oil refinery. The significant merits from these three retrofit alternatives show that the proposed MINLP formulation has been a great help to enhance the inter-plant steam integration in an industrial sector. (C) 2014 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.