Renewable Energy, Vol.72, 99-104, 2014
A new future for carbohydrate fuel cells
The development of renewable energy sources to reduce our dependence on limiting fossil fuel reserves continues to be a critical research initiative. Utilizing the abundant high energy content of carbohydrates contained in biomass (cellulose and hemicellulose) must be considered to be an important contribution to our overall energy budget. Carbohydrate-derived furan-based liquid fuels and especially ethanol are becoming important added components forming gasoline blends to lower overall fossil fuel use. Alternate renewable energy processes that more efficiently use the carbohydrate energy content are desirable and would lower the overall carbohydrate input requirement for energy production. Recently, new catalysts have shown the feasibility of efficiently transporting the 24 electrons in glucose to fuel cell electrodes making possible the direct conversion of the stored energy in carbohydrates into electricity with the benign formation of carbonate and water as products. The conversion of glycerol, a byproduct of biodiesel production, into three-carbon carbohydrates provides another opportunity to produce electricity from an abundant carbohydrate source. New developments in catalyst systems promise to make carbohydrate fuel cells an important part of future energy strategies. (C) 2014 Elsevier Ltd. All rights reserved.
Keywords:Renewable energy;Alkaline carbohydrate fuel cells;Electricity from biomass;Viologen catalysis