화학공학소재연구정보센터
Renewable Energy, Vol.74, 158-169, 2015
A comprehensive power loss, efficiency, reliability and cost calculation of a 1 MW/500 kWh battery based energy storage system for frequency regulation application
Battery based energy storage system (ESS) has tremendous diversity of application with an intense focus on frequency regulation market. An ESS typically comprised of a battery and a power conversion system. A calculation of performance parameters is performed in this research. The aim is to formulate an in-depth analysis of the ESS in terms of power losses of the semiconductor and electrical devices, efficiency, reliability and cost which would foster various research groups and industries around the globe to improve their future product. In view of this, a relation between the operating conditions and power losses is established to evaluate the efficiency of the system. The power loss calculation presented in this paper has taken into account the conduction and switching losses of the semiconductor devices. Afterwards, the Arrhenius Life Stress relation is adopted to calculate the reliability of the system by considering temperature as a covariate. And finally, a cost calculation is executed and presented as a percentage of total cost of the ESS. It has been found that the power loss and efficiency of the ESS at rated power is 146 kW and 85% respectively. Furthermore, the mean time between failures of the ESS is 8 years and reliability remains at 73% after a year. The major cost impact observed is for battery and PCS as 58% and 16% respectively. Finally, it has been determined that further research is necessary for higher efficient and lower cost system for high penetration of energy storage system in the market. (C) 2014 Elsevier Ltd. All rights reserved.