Renewable Energy, Vol.74, 505-516, 2015
Experimental investigation of the performance of a liquid fuel-fired porous burner operating on kerosene-vegetable cooking oil (VCO) blends for micro-cogeneration of thermoelectric power
Studies related to porous burner for thermoelectric (TE) power generation have mainly focused toward achieving a specific range of power output for various applications. However, detailed analyses on the performance and emission aspects of the porous burner are lacking. In addition, physical integration between the burner and TE modules has added further complexity in this research area. Thus, this work aims to comprehend the effects of fuel air equivalence ratio on the performance and emission characteristics of a liquid fuel-fired porous burner for micro-cogeneration of TE power. A catalytically inert Al2O3 porous medium was incorporated into a liquid fuel-fired porous burner operating on four mixtures of kerosene-vegetable cooking oil (VCO) blends: 100 kerosene, 90/10 KVCO, 75/25 KVCO, and 50/50 KVCO. Ten bismuth-telluride TE cells were arranged in a ten-sided polygon that, together with finned dissipators, formed a TE module electrically connected in series but thermally connected in parallel. The performance aspects at various fuel air equivalence ratios were thoroughly evaluated with the corresponding temperature profiles, voltage, current, power output, and electrical efficiency. Results indicated that the surface temperature of the porous media was generally higher than the developed and exit flame temperature of the burner. Varying the fuel-air equivalence ratio significantly affected the electrical efficiency, with a maximum and minimum value of 1.94% and 1.10%, respectively. The power output steadily increased in the lean region, but stabilized as the fuel-air equivalence ratio slowly increased beyond the stoichiometric ratio. The CO emission was relatively lower at the lean region; however, significant amount was recorded in the rich combustion region. Moreover, NOx fluctuated between 1 ppm and 4 ppm over the entire range of fuel-air equivalence ratio. (C) 2014 Elsevier Ltd. All rights reserved.