화학공학소재연구정보센터
Science, Vol.346, No.6216, 1492-1495, 2014
Toward control of electron transfer in donor-acceptor molecules by bond-specific infrared excitation
Electron transfer (ET) from donor to acceptor is often mediated by nuclear-electronic (vibronic) interactions in molecular bridges. Using an ultrafast electronic-vibrational-vibrational pulse-sequence, we demonstrate how the outcome of light-induced ET can be radically altered by mode-specific infrared (IR) excitation of vibrations that are coupled to the ET pathway. Picosecond narrow-band IR excitation of high-frequency bridge vibrations in an electronically excited covalent trans-acetylide platinum(II) donor-bridge-acceptor system in solution alters both the dynamics and the yields of competing ET pathways, completely switching a charge separation pathway off. These results offer a step toward quantum control of chemical reactivity by IR excitation.