화학공학소재연구정보센터
Solar Energy, Vol.110, 745-755, 2014
An inverse design method for a cavity receiver used in solar dish Brayton system
An inverse design method is developed in order to quickly find possible cavity receiver designs with relative uniform cavity wall surface temperature for a solar dish cavity receiver. In this design method, a heat transfer model of the absorber wall is used for analyzing the main heat transfer process between the cavity wall outer surface, the inner surface and the working fluid. Furthermore, a ray-tracing model based on the parameters of a real dish is utilized for obtaining the solar radiative boundary conditions for the heat transfer model. Impinging jet cooling technology is introduced due to its high heat transfer coefficient in the stagnation area, which can be used for cooling the peak flux on the cavity wall. After applying a well-designed impinging system, the temperature peak on the peak flux region in traditional receiver designs can be mitigated without introducing any over pressure drop problem. (C) 2014 Elsevier Ltd. All rights reserved.