화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.11, No.8, 647-654, August, 2001
Zr-Nb계 합금의 석출물 특성과 산화 특성에 미치는 마지막 열처리 온도의 영향
Effect of Final Annealing Temperature on Precipitate and Oxidation of Zr- Nb Alloys
초록
Nb 첨가 Zr합금인 Zr-lNb합금과 Zr-lNb-lSn-0.3Fe함금의 석출물 및 산화 특성에 미치는 마지막 열처리 온도의 영향을 알아보기 위하여 최종 열처리 온도를 450 ? C 에서 800 ? C 까지 변화시켜 미세조직 및 산화 특성을 조사하였다. 부식 시험은 400 ? C , 수중기 분위기에서 270 일 동안 실시하였으며 X-선 회절법을 이용하여 산화막 결정 구조를 분석하였다. 마지막 열처리 온도가 600 ? C 이상일 때 두 합금 모두 β -Zr이 관찰되었으며 모두 재결정 이후 마지막 열처리 온도가 상승할수록 석출물의 면적 분율이 증가하는 경향을 나타내었다. 모든 열처리 온도 구간에서 Zr-lNb합금의 부식 저항성이 Zr-lNb-lSn-0.3Fe 합금에 비해 우수하였으며 두 합금 모두 재결정 이후 부식 저항성이 급격히 나빠졌다. 이는 600 ? C 이후 형성된 β -Zr의 영향으로 밝혀졌다.
ffects of final annealing temperature on the precipitate and oxidation were investigated for the Zr-lNb and Zr-lNb-lSn-0.3Fe alloys. The microstructure and oxidation of both alloys were evaluated for the optimization of final annealing process of these alloys in the annealing temperature regime of 450 to 800 ? C . The corrosion test was performed under steam at 400 ? C for 270 days in a static autoclave. The oxide formed was identified by low angle X-ray diffraction method. The β -Zr was observed at annealing temperature above 600 ? C . Above 600 ? C , the precipitate area volume fraction of Zr-lNb and Zr-1Nb-lSn-0.3Fe alloys appeared to be increased with increasing the final annealing temperature. The corrosion resistance of Zr-lNb was higher than that of Zr- lNb-lSn-0.3Fe alloy. The corrosion rate of both alloys were accelerated due to the formation and growth of β -Zr with increasing the annealing temperature.
  1. Baek JH : KAERI Report, KAERI/AR-547/99, 17 (1999) (1999)
  2. Garzaroli F : Zirconium in the Nuclear Industry, ASTM STP 1132, 35 (1991) (1991)
  3. Isobe T, Matsuo Y, Zirconium in the Nuclear Industry, ASTM STP 1132. 125 (1991) (1991)
  4. Sabol GP, Kilp GR, Balfour MG, Roberts E, Zirconium in the Nuclear Industry. ASTM STP 1023. 227 (1989) (1989)
  5. Comstock RJ, Schoenberger G, Sabol GP, Zirconium in the Nuclear Industry. ASTM STP 1295, 710 (1996) (1996)
  6. Marden JP, Charquet D, Senevat J, Zirconium in the Nuclear Industry. ASTM STP 1354. 357 (1998) (1998)
  7. Wadekar SL, Banerjee S, Raman VV, Asundi MK, Zirconium in the Nuclear Industry, ASTM STP 1132, 140 (1991) (1991)
  8. Knorr DB, Notis MR, J. Nucl. Mater., 18 (1975)
  9. Nomura S, Akutsu C, Electrochem. Techno., 4, 198 (1989)
  10. Schemel JH : Zirconium alloy fuel clad tubing engineering guide, Sandvik Special Metals, Kennewick, WA., 298 (1989) (1989)
  11. ASTM-G2 : Standard Test Method for Corrosion Testing of Products of Zirconium, Hafnium and Their Alloys in Water at 680 ? F or in Steam at 750 ? F
  12. Kim KH, Choi BK, Baek JH, Kim SJ, Jeong YH, J. Kor. Inst. Met & Mater., 9, 188 (1999)
  13. Holm K, Embury JD, Acta Metallur., 25, 1191 (1977)
  14. Lee MH, Kim HG, Yoon YG, Jeong YH, J. Kor. Inst. Met. & Mater., 7, 923 (2000)
  15. Kass S, Corrosion-NACE, 27, 443 (1971)
  16. Jeong YH, Korean J. Mater. Res., 6, 585 (1996)
  17. Kim HG, Lim YS, Wey MY, Jeong YH, J. Kor. Inst. Met & Mater., 37, 584 (1999)
  18. Zaimovsky AS, Nikulina AV, Reshetnikov NG, Zr Alloys In Nuclear Power, Moscow, Energoizdat, (1981) (1981)
  19. Godlewsky J, Zirconium in the Nuclear Industry, ASTM STP 1245, 663 (1994) (1994)
  20. Godlewsky J, Zirconium in the Nuclear Industry, ASTM STP 1132, 416 (1991) (1991)