- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.11, No.6, 527-527, June, 2001
Cu oxide의 형성과 H(hfac) 반응을 이용한 Cu 박막의 건식식각
Cu dry etching by the reaction of Cu oxide with H(hfac)
초록
O 2 plasma와 H(hfac)을 이용한 Cu 박막의 건식 식각을 조사하였다. 휘발성이 큰 Cu(hfac) 2 와 H 2 O 를 탈착시키기 위하여 O 2 Plasma를 이용한 Cu 박막의 산화와 생성된 Cu 산화막을 H(hfac)과의 반응으로 제거하는 공정으로 식각을 수행하였다. Cu 박막의 식각율은 50-700 /min의 범위를 보였으며, 기판온도, H(hfac)/O 2 유량비, plasma power에 따라 변하였다. Cu 박막의 식각율은 기판온도 215 ? C 보다 높은 온도구간에서 RF power가 증가함에 따라 증가하였고, 산화 공정과 H (hfac)과의 반응이 균형을 이루는 최적의 H (hfac)/O 2 유량비는 1:1임을 확인하였다. Ti mask를 사용한 Cu Patterning은 유량비 1 : 1, 기판온도 25 0 ? C 에서 실시하였고, 30 ? 외 taper slope를 갖는 등방성 etching profile을 얻을 수 있었다. Taper angle을 갖는 Cu 건식 patterning은 고해상도의 대면적 thin film transistor liquid-crystal(TFT-LCDs)를 위래 필요한 것으로써 기판온도, RF power, 유량비를 조절한 one-step 공정으로부터 성공적으로 얻을 수 있었다.
Dry etching of copper film using O 2 plasma and H(hfac) has been investigated. A one-step process consisting of copper film oxidation with an O 2 plasma and the removal of surface copper oxide by the reaction with H(hfac) to form volatile Cu(hfac) 2 and H 2 O was carried but. The etching rate of Cu in the range from 50 to 700 /min was obtained depending on the substrate temperature, the H(hfac)/O 2 flow rate ratio, and the plasma power. The copper film etch rate increased with increasing RF power at the temperatures higher than 215 ? C . The optimum H(hfac)/O 2 flow rate ratio was 1:1, suggesting that the oxidation process and the reaction with H(hfac) should be in balance. Cu patterning using a Ti mask was performed at a flow rate ratio of 1:1 on 25 0 ? C \ulcorner and an isotropic etching profile with a taper slope of 30 ? was obtained. Cu dry patterning with a tapered angle which is necessary for the advanced high resolution large area thin film transistor liquid-crystal displays was thus successfully obtained from one step process by manipulating the substrate temperature, RF power, and flow rate ratio.
- Awaya N, Arita Y, J. Electron. Mater., 21, 959 (1992)
- Jain A, Kodas TT, Jairath R, Hampdensmith MJ, J. Vac. Sci. Technol. B, 11(6), 2107 (1993)
- Lin J, Chen MC, Jpn. J. Appl. Phys., 38, 4863 (1999)
- Murarka SP, Hymes S, Solid State Mater. Sci., 20, 87 (1995)
- Park YJ, Andleigh VK, Thompson CV, J. Appl. Phys., 85(7), 3546 (1999)
- Whitman C, Moslehi MM, Paranjpe A, Velo L, Omstead T, J. Vac. Sci. Technol. A, 17(4), 1893 (1999)
- Liu R, Pai CS, Martinez E, Solid State Electr., 43, 1003 (1999)
- Lin XW, Pramanlk D, Solid State Technology, 63 (1998)
- Ohno K, Sato M, Arita Y, J. Electrochem. Soc., 143(12), 4089 (1996)
- Schwartz GC, Schaible PM, J. Electrochem. Soc., 130, 1777 (1983)
- Ohno K, Sato M, Arita Y, Jpn. J. Appl. Phys., 28, 1070 (1989)
- Lee SK, Chun SS, Hwang CY, Lee WJ, Jpn. J. Appl. Phys., 36, 50 (1997)
- Howard BJ, Steinbruchel CH, Appl. Phys. Lett., 59, 914 (1991)
- Ohshita Y, Hosoi N, Thin Solid Films, 262(1-2), 67 (1995)
- Kwon MS, Lee JY, J. Electrochem. Soc., 146(8), 3119 (1999)
- Jain A, Kodas TT, Hampdensmith MJ, Thin Solid Films, 269(1-2), 51 (1995)
- Kwang SW, Kim HU, Rhee SW, J. Vac. Sci. Technol. B, 17, 1 (1999)