Korean Journal of Materials Research, Vol.11, No.2, 115-119, February, 2001
다발체형성과 인발공정에 의해 제조된 Cu-Nb 미세복합재료의 미세조직과 전도도
Microstructure and Conductivity of Cu-Nb Microcomposites Fabricated by Bundling and Drawing Process
초록
다발체형성 제조기술을 이용하여 심하게 인발가공된 Cu-Nb 미세복합재료 전선의 전기적 특성과 열처리에 따른 미세조직 변화와의 관계에 대하여 연구하였다. 다발체형성과 인발공정에 의해 제조된 전선에서 Nb필라멘트 단면방향의 형태는 직선이거나 약간 굽은 형태로 나타났다 Nb필라멘트 형태의 차이는 고온에서의 다발체형성 제조공정중의 Nb필라멘트의 파손과 실린더화에 의해 발생하였다. Cu-Nb 미세복합재료의 비저항은 Cu-Nb 계면에서의 전자 산란에 의해 주로 결정된다. 400 ? C 의 어닐링온도 이하에서 전도도의 감소는 침상형태 석출물의 정합변형율과 관계된 산란의 기여가 증가하기 때문이다. 비저항의 비 ( ρ 295K / ρ 75K )의 약간의 감소는 또한 Nb원자의 석출 때문이다. 50 0 ? C 의 어닐링온도에서 Cu-Nb 미세복합재료의 전도도 중가는 Nb필라멘트의 조대화와 구형화때문이다.
The electrical properties of heavily drawn bundled Cu- Nb filamentary microcomposite wires were examined and correlated with the microstructural changes caused by thermomechanical treatments. The cross sectional shape of Nb filaments in wires fabricated by bundling and drawing appear straight or slightly curved. The different shape of Nb filaments is attributed to the break- up and cylinderization of Nb filaments during the bundling process at high temperatures. The resistivity of Cu-Nb microcomposites is predominantly controlled by electron scattering at Cu-Nb interfaces. The decrease of the conductivity below the annealing temperature of 400 ? C is due to the increasing contribution of the scattering associated with coherency strains of needle- shaped precipitates. The slight decrease of the resistivity ratio ( ρ 295K /ρ 75K ) is also due to the precipitation of Nb atoms. The increase in conductivity in Cu-Nb microcomposites at an annealing temperature of 50 0 ? C is due to the coarsening and spheroidization of Nb filaments.
- Bevk J, Harbison JP, Bell JL, J. Appl. Phys., 49, 6031 (1978)
- Hong SI, Hill MA, Sakai Y, Wood JT, Embury JD, Acta metall. mater., 43, 3313 (1995)
- Spitzig WA, Laabs FC, Downing HL, Renaud CV, Materials Manufacturing Processes, 7, 1 (1992)
- Spitzig WA, Pelton AR, Laabs FC, Acta Metall., 35, 2427 (1987)
- Hong SI, Hill MA, Mater. Sci. Eng., 281, 189 (2000)
- Trybus CL, Chumbley LS, Spitzig WA, Verhoeven JD, Ultramicroscopy, 22, 315 (1989)
- Verhoeven JD, Chumbley LS, Laabs FC, Spitzig WA, Acta Metall. Mater., 39, 2825 (1991)
- Savena MC, Sharma BD, Trans. Indian Inst. Matals, 23, 16 (1970)
- Biselli C, Morris DG, Acta Metall. Mater., 42, 163 (1994)
- Biselli C, Morris DG, Acta Metall. Mater., 44, 493 (1996)
- Knights PW, Wilker P, Metall. Trans., 4, 2389 (1973)
- Komen Y, Rezek J, Metall. Trans., 6A, 549 (1975)
- Weatherly GC, Humble P, Borland D, Acta Metall., 27, 1815 (1979)
- Karasek KR, Bevk J, J. Apple. Phys., 52, 1370 (1981)
- Pollock DD, Physics of Engineering Materials, Prentice Hall, Englewood Cliffs, New Jersey, p. 220 (1990) (1990)
- Hong SI, Hill MA, Mater. Sci. Eng. A, 264, 151 (1999)
- Pelton AR, Laabs FC, Spitzig WA, Cheng CC, Ultramicroscopy, 22, 251 (1987)
- Hong SI, Hill MA, Acta Metall. Mater., 46, 4111 (1998)
- Verhoeven JD, Dowing HL, Chumbley LS, Gibson ED, J. Appl. Phys., 65, 1293 (1989)
- Pantsyrnyi VI, Shikov AJ, Nikulin AD, Vorobova AE, Dergunova EA, Silaev AG, Belakov NA, Potapenko II, IEEE Trans. Magnetics, 32, 2866 (1996)
- Frommeyer G, Wassermann G, Phys. Stat. Sol. A, 27, 99 (1975)