화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.12, 845-852, December, 2000
카올린나이트로부터 중기공성 γ?Al 2 O 3 의 제조 및 특성
Preparation and Characterization of Mesoporous γ?Al 2 O 3 Prepared from Kaolinite
초록
국내산 kaolinite를 소성한 다음 실리카를 선택적으로 추출하여 중기공성 γ?Al 2 O 3 를 제조하였다. 1000 ? C 에서 24시간 소성된 kaolinite는 소량의 무정형 실리카와 γ?Al 2 O 3 으로 이루어진 스피넬 상의 미세구조로 전이되었음을 확인하였다. 다공성 γ?Al 2 O 3 는 25 90 ? C 의 반응온도, 0.5~4h의 추출시간 및 1~8M의 KOH 농도범위에서 무정형 실리카를 선택적으로 용해하여 제조할 수 있었다. 90 ? C , 1시간 및 4M의 KOH 농도조건에서 얻어진 γ?Al 2 O 3 는 약 40 80\AA 정도의 매우 좁은 하나의 기공크기 분포를 가지고 있었으며, mesopore의 기공이 많이 생성되었다. 비표면적은 250m 2 /g 이고, 총 기공부피는 0.654cm 3 /g 로 나타났다.
Mesoporous γ?Al 2 O 3 has been prepared by selective leaching of silica from calcined domestic kaolinite. From XRD and TG-DTA data, it was found that the microstructure of a spinel phase, consisting of γ?Al 2 O 3 containing a small mount of amorphous silica, was obtained by calcining kaolinite samples at around 1000 ? C for 24h. Porous γ?Al 2 O 3 was prepared by selectively dissolving the amorphous silica in KOH solutions of 1~4M at temperatures of 25 90 ? C for leaching time of 0.5~4h. In the case of the γ?Al 2 O 3 obtained upon KOH treatment of 4M at 90 ? C for 1h, it showed a very narrow unimodal pore size distribution, and also formed much mesopore at a diameter of around 40 80\AA . The specific surface area was 250m 2 /g and the total pore volume was 0.654cm 3 /g.
  1. Oxide and Hydroxides of Aluminum, Wefers K, Misra C, ALCOA Research Laboratories, Technical Paper 19, rev/ ALCOA Research Laboratories, 1987 (1987)
  2. Hart DL, lumina Science and Technology Handbook Chemicals/ The American Ceramin Society Inc, 1990 (1990)
  3. Oberlander RK, Aluminas for Catalysts, Applied Industrial Catalysis/ Academic Press, Inc, v.3, 1984 (1984)
  4. Bagwell RB, Messing GL, Key Engineering Materials, 115, 45 (1996)
  5. Jovanovic N, Novakovvic T, Janackovic J, Terlecki-Baricevic A, J. Colloid. Interf. Sci., 150, 36 (1991)
  6. Jaworska-Galas Z, Janiak S, Mista W, Wrzyszcz J, Zawadzkl M, J. Mat. Sci., 28, 2075 (1993)
  7. Kim SY, Kim YS, J. Kor. Ceram. Soc., 32, 1055 (1995)
  8. Kim SY, Kim YS, J. Kor. Ceram. Soc., 33, 92 (1995)
  9. Paik YH, Lee CK, J. Kor. Ceram. Soc., 19(2), 157 (1982)
  10. Park HC, Cho WJ, Kang HK, Son MM, J. Kor. Ceram. Soc., 26(1), 81 (1989)
  11. Okata K, Shimai A, Takei T, Hayashi S, Yasumori A, MacKenizie KJD, Microporous Mesoporous Mater., 21, 289 (1998)
  12. Saito S, Hayashi S, Yasumori A, Okada K, J. Porous Mater, 3, 233 (1996)
  13. Saito S, Motohashi T, Hayashi S, Yasumori A, Okada K, J. Mater. Chem., 7, 1615 (1997)
  14. Grim RE, Clay Mineralogy : Structure of the Clay Minerals(2nd ed.)/ McGraw-Hill, 1968 (1968)
  15. Taylor HWF, Clay Minerals Bull., 5(28), 45 (1962)
  16. Cohan LH, J. Am. Chem. Soc., 69, 433 (1938)
  17. Papayannakos NG, Thanos AM, Kaloidas VE, Microporous Mater., 1, 413 (1993)
  18. Onuma K, Kobayashi H, Suzuki M, J. Jpn. Petrol. Inst., 27, 420 (1884)
  19. Trimm DL, Stainistaus A, Appl. Catal., 21, 215 (1986)