화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.10, No.6, 409-414, June, 2000
고합급백주철에 있어서 열처리가 기지조직의 변태에 미치는 영향
Effects of Heat-Treatments on Transformation Behavior of Matrix Structures in High Alloyed White Cast Iron
초록
3%C-10%Cr-5%Mo-5%W, 3%C-10%V-5%Mo-5%W 및 3%C-17%Cr-3%V의 3종류 고합금백주철에 있어서 열처리후의 기지조직의 변태거동을 연구하였다. 15kg 용량의 고주파 유도용해로에 선철, 고철, Fe-Cr, Fe-V, Fe-Mo 및 Fe-W 등을 장입시켜 용해시킨 후 슬래그를 제거시키고 1550 ? C 에서 Y-block의 펩 주형에 주입시켰다. 적당한 크기로 절단한 시편을 진공분위기하에 950 ? C 에서 5시간동안 우선 균질화처리를 실시하였다. 그 후 다시 이 시편을 1050 ? C 에서 2시간동안 오스테나이징시킨 후 강제공냉을 행하였다. 강제공냉된 시편을 300 ? C 에서 3시간 유지시킨 후 템퍼링을 실시하였다. 주방상태에서의 기지조직은 3합금 공히 퍼얼라이트이었으며 강제공냉후에는 마르텐사이트 및 오스테나이트로 변태하였다. 또한 기지조직내에 무수히 많은 이차탄화물 입자들의 석출되었다. 템프링 후 일부 오스테나이트 및 마르텐사이트는 템퍼드마르텐사이트로 변태하였다.
Three different white cast irons alloyed with Cr, V, Mo and W were prepared in order to study their transformation behavior of matrix structures in heat-treated conditions. The specimens were produced using a 15kg-capacity high frequency induction furnace. Melts were super-heated to 1600 ? C , and poured at 1550 ? C into Y-block pepset molds. Three combinations of the alloying elements were selected so as to obtain the different types of carbides and matrix structures : 3%C-10%Cr-5%Mo-5%W(alloy No. 1), 3%C-10%V-5%Mo-5%W(alloy No. 2) and 3%C-17%Cr-3%V(alloy No. 3). The heat-treatments were conducted as follows: frist of all, as-cast specimens were homogenized at 950 ? C for 5h under the vacuum atmosphere. Then, they were austenitized at 1050 ? C for 2h and followed by air-hardening in air. The air-hardened specimens were tempered at 300 ? C for 3h. The observation of morphology of the matrix structures was carried out in the states of as-cast(AS), air-hardened(AHF) and tempered(AHFT). The matrix structures of each alloy were almost fully pearlitic in the as-cast state but it was transformed to martensite, tempered martensite and retained austenite by the heat-treatments such as air-hardening and tempering.
  1. Fairhust WA, Rohrig K, Foundry Trade J, 136, 685 (1974)
  2. Watson JD, Mutton PJ, Sare IR, Matals Forum, 3, 74 (1980)
  3. Yamaguchi K, Matsubara T, J. Japan Foundry Eng. Society, 62, 43 (1990)
  4. Yu SK, Matsubara Y, Proc. of 3rd Asian Foundry Congress, 3, 128 (1995)
  5. Matsubara Y, Sasaguri N, Hashimoto M, Proc. of 4th Asian Foundry Congress, 4, 251 (1996)
  6. Shimizu K, Sasaguri N, Matsubara Y, Proc. of 4th Asian Foundry Congress, 4, 283 (1996)
  7. Matsubara Y, Sasaguri N, J. Japan Foundry Eng. Society, 68, 1099 (1996)
  8. Honda Y, Matsubara Y, Proc. of 5th Asian Foundry Congress, 5, 162 (1997)
  9. Yu SK, Matsubara Y, Proc. of 4th Asian Foundry Congress, 4, 291 (1996)
  10. Zum Gahr KH, Eldis GT, Wear, 86, 175 (1980)
  11. Pearce JTH, AFS Trans., 92, 599 (1984)
  12. Yu SK, Sasaguri N, Matsubara Y, Int. J. Cast Metals Research, 11, 561 (1999)
  13. Reed-Hill, Physical Metallurgy Principles/ Reed-Hill, 1973 (1973)